arm >

Trusted Firmware - /
Explorer (TFX)

*”. ‘. /',

‘ J g
J g
”
' f Lol
~ 7)
4 >
. A J J

A short introduction

Mate Toth-Pal
2023.02.16 »

Overview

-- Trusted Firmware Explorer (TFX) aims to be a Trusted Firmware aware debugger

enabling the following use cases:
- Interactive exploration of SMC interfaces and Trusted Firmware SW state
- Explore and prototype example flows for SMC interfaces by interactive injection of SMC calls into the
debug target from the command line.
- Inspect the system state.

- Development of concurrency tests
- Script concurrent execution flows which trigger interesting interleavings which might be difficult to

test otherwise.

2 ©2023Arm G rm

Overview

-- TFX is a Python library which communicates with the system under test running in an
FVP via the Iris Debug Interface.

-- The TFX makes use of the Iris python library provided for FVPs which provides basic
abstractions for debug targets (e.g. CPU), breakpoints, memory operations (read/write)
in memory spaces (Secure Monitor, Physical Memory, NS Hyp)

TCP/IP . .
FVP T Iris python library
Iris Support Lib |
component | TFX core library
Component Iris TCP server | | |
Component Python Python script
interactive shell

3 ©2023Arm a rm

Basic Features

-- Inject and execute code in FVP
-- Trigger Normal world interrupt (writing ICC_SGI1R_EL1)

-- Issue RMI (Realm Management interface) calls
- Signature is parsed from RMM machine readable spec
- Structures types are parsed from RMM ELF.

-- Call C functions on the debug target

Ability to start an interactive “TFX shell” via which the state of the target can be interrogated
and modified.

4 ©2023 Arm G rm

5

Advanced Features

-- Execute multiple SMC calls in a single run
- Compile asm code on the fly and inject it to the FVP memory

-- Create Realms from ELF files

- Execute complex set of RMI calls to delegate memory granules, set up Stage 2 translation tables,

create RECs (Realm Execution Context)

-- Memory overlay class for accessing memory using C structure names

Given the following C definition:
struct realm params {

/¥ o0 */
unsigned int ipa width;
/¥ .00 */

s

This can be accessed in Python via:

params = create overlay("realm params", addr)
print(params.ipa_width)

In this example, “addr” is a physical address. Similar Python code can be used to access
Realm memory, in which case TFX arranges appropriate stage 2 translation.

© 2023 Arm

arm

Flows

-- Flows in TFX are python generator functions
- They describe a sequence of actions to be executed (RMI calls, Function calls)
- Might contain sanity checks on RMI call results, and on other state of the firmware.

-- There are two ways to run a flow

« Flow.run_f(flow)
+The flow is expected to be a generator that yields every time it could/should be interleaved.
+ With this type of flows, the flow should start/stop the debug target and execute the RMI/function calls

« Flow.run_c(flow)
-+ The flow is expected to be a generator that yields CodeInject objects
+These generators are expected not to start/stop the debug target

- The generator is fully exhausted by the function, the CodeInjects are merged, and all the generated code
is executed at once

6 © 2023 Arm q rm

7

Executing an RMI call

-- MRS is parsed (Only once before the first call)
-~ Machine code is assembled using info from

MRS

- The assembled code is injected at the current
PC

-- Breakpoint is set after the injected code
-- The debug target is started
-- When the breakpoint at the end of the

injected code is hit, extract RMI results

-~ Restore original code in memory and register

content (including PC)

© 2023 Arm

TFX script TEX library IRIS server CPU

init(

-
I parse_mrs()
.{ ..

EMI_REALM_CREATE(rd, params) >

Use MRS to convert RMI
command into instruction(s)

Inject instructions

Set breakpoint after
injected sequence

Start execution

Extract EMI result

Restore original code

arm

8

TF< script TEX library IRIS server CPU CRUZ
N . Set breakpoints
Executing overlapping RMI calls wmeeaes > > -
Set breakpoints
to interleave at - > »
-- Set breakpoints for both calls Create fow objects o0
cammands
-- Create flow objects, and call FlowZip to FlowZin(eall cal2) g
start the interleaving of the flows e R o N o
-- Then in a loop (until both flows are T
finished): S rasvpont s
- Inject instructions for the flow1 miEclEd sEuEne > >

Start execution

- Start the debug target assigned to flow1l

- When a breakpoint is hit, the execution returns
to the TFX library

- Inject instructions for the flow2

Inject instructions2 and
Set breakpoint after
injected sequence

Start execution

- Start the debug target assigned to flow2

- When a breakpoint is hit, the execution returns
to the TFX library

Extract RMI result1
and Restore original code

-- Extract results for both flows and restore

Y

Extract RM| result2
and Restaore original code

memory and CPU states

Y

Y

© 2023 Arm

Test cases

-- Realm creation/destroy

-- PSCI Controls
- Realm calls PSCI SMC calls, the test checks that the return values to the NS host are the expected.

-- Data Abort
- Try to access unmapped addresses and outside of PAR

-- Attestation
- Parallel execution of attestation requests from different RECs
- Overlapping attestation request and measurement update

9 ©2023Arm G rm

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: Trusted Firmware Explorer (TFX)
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Basic Features
	Slide 5: Advanced Features
	Slide 6: Flows
	Slide 7: Executing an RMI call
	Slide 8: Executing overlapping RMI calls
	Slide 9: Test cases
	Slide 10

