
© 2023 Arm

Mate Toth-Pal

2023.02.16

Trusted Firmware 
Explorer (TFX)

A short introduction



2 © 2023 Arm

Overview

Trusted Firmware Explorer (TFX) aims to be a Trusted Firmware aware debugger 
enabling the following use cases:
• Interactive exploration of SMC interfaces and Trusted Firmware SW state
• Explore and prototype example flows for SMC interfaces by interactive injection of SMC calls into the 

debug target from the command line.
• Inspect the system state.
• Development of concurrency tests
• Script concurrent execution flows which trigger interesting interleavings which might be difficult to 

test otherwise.



3 © 2023 Arm

Overview

TFX is a Python library which communicates with the system under test running in an 
FVP via the Iris Debug Interface.

The TFX makes use of the Iris python library provided for FVPs which provides basic 
abstractions for debug targets (e.g. CPU), breakpoints, memory operations (read/write) 
in memory spaces (Secure Monitor, Physical Memory, NS Hyp)

FVP

Component

Component

Component

Iris Support Lib

Iris TCP server

TFX core library

Python scriptPython 

interactive shell

Iris python libraryTCP/IP



4 © 2023 Arm

Basic Features

Inject and execute code in FVP

Trigger Normal world interrupt (writing ICC_SGI1R_EL1)

Issue RMI (Realm Management interface) calls
• Signature is parsed from RMM machine readable spec
• Structures types are parsed from RMM ELF.

Call C functions on the debug target

Ability to start an interactive “TFX shell” via which the state of the target can be interrogated 
and modified.



5 © 2023 Arm

Advanced Features

Execute multiple SMC calls in a single run
• Compile asm code on the fly and inject it to the FVP memory

Create Realms from ELF files
• Execute complex set of RMI calls to delegate memory granules, set up Stage 2 translation tables, 

create RECs (Realm Execution Context)

Memory overlay class for accessing memory using C structure names

Given the following C definition:

struct realm_params {
/* ... */
unsigned int ipa_width;
/* ... */

};

This can be accessed in Python via:

params = create_overlay("realm_params", addr)
print(params.ipa_width)

In this example, “addr” is a physical address. Similar Python code can be used to access 
Realm memory, in which case TFX arranges appropriate stage 2 translation.



6 © 2023 Arm

Flows

Flows in TFX are python generator functions
• They describe a sequence of actions to be executed (RMI calls, Function calls)
• Might contain sanity checks on RMI call results, and on other state of the firmware.

There are two ways to run a flow
• Flow.run_f(flow)

The flow is expected to be a generator that yields every time it could/should be interleaved. 
With this type of flows, the flow should start/stop the debug target and execute the RMI/function calls

• Flow.run_c(flow)
The flow is expected to be a generator that yields CodeInject objects
These generators are expected not to start/stop the debug target

The generator is fully exhausted by the function, the CodeInjects are merged, and all the generated code 
is executed at once



7 © 2023 Arm

Executing an RMI call

MRS is parsed (Only once before the first call)

Machine code is assembled using info from 
MRS

The assembled code is injected at the current 
PC

Breakpoint is set after the injected code

The debug target is started

When the breakpoint at the end of the 
injected code is hit, extract RMI results

Restore original code in memory and register 
content (including PC)



8 © 2023 Arm

Executing overlapping RMI calls

Set breakpoints for both calls

Create flow objects, and call FlowZip to 
start the interleaving of the flows

Then in a loop (until both flows are 
finished):
• Inject instructions for the flow1
• Start the debug target assigned to flow1
• When a breakpoint is hit, the execution returns 

to the TFX library
• Inject instructions for the flow2
• Start the debug target assigned to flow2
• When a breakpoint is hit, the execution returns 

to the TFX library

Extract results for both flows and restore 
memory and CPU states



9 © 2023 Arm

Test cases

Realm creation/destroy

PSCI Controls
• Realm calls PSCI SMC calls, the test checks that the return values to the NS host are the expected.

Data Abort
• Try to access unmapped addresses and outside of PAR

Attestation
• Parallel execution of attestation requests from different RECs
• Overlapping attestation request and measurement update



© 2023 Arm

The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks


	Slide 1: Trusted Firmware Explorer (TFX)
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Basic Features
	Slide 5: Advanced Features
	Slide 6: Flows
	Slide 7: Executing an RMI call
	Slide 8: Executing overlapping RMI calls
	Slide 9: Test cases
	Slide 10

