
© 2023 Arm

Joanna Farley/Dan Handley
May 2023

Rust and the 
Trustedfirmware.org
Project Ecosystem
Community Discussions



2 © 2023 Arm

Objective
Seek Trustedfirmware.org Member Feedback
• Initially with Steering Committee discussion

Agree high-level Trustedfirmware.org position
• Follow up when/if required with individual project discussions

Using high-level Trustedfirmware.org position as a framework

So why talk about Rust?
• Rust is rapidly increasing in popularity
• Rust has a particular focus on safety and robustness
• Rust was designed for and is being adopted by Firmware/Embedded software
• Could be attractive to Trustedfirmware.org community
• Should not ignore it or risk future community disruption



3 © 2023 Arm

Overview
Three broad usage of Rust
• New project

Primarily Rust but possibly some C linkage (e.g. Parsec, rtic, embassy, opentitan, hubris, … )
• Alternative project

Originally C and reimplemented in Rust (e.g. Coreboot -> Oreboot)
• Contributions Project

Primarily C project that can take Rust Contributions (e.g. Linux Kernel that can take drivers written in Rust)
§ Additional examples: Zephyr, riot-os, vxworks, chromium, …

Provide guidance for existing TrustedFirmware.org projects is the initial priority
• Details are likely to be very Project specific
• Project community need to be engaged
• Likely through a Techforum Discussions

Quick Example
• Of possibilities to give discussion a real context using TF-A



4 © 2023 Arm

TF-A
https://ci-builds.trustedfirmware.org/static-files/Nz0yWDDcjRUtFTxFT52d04od3FGmGbnfDKQECE_-5oMxNjgxMzg5Mjk2NjA5OjE2OmpvYW5uYWZhcmxleS1hcm06am9iL3RmLWEtc2xvYy12aXN1YWxpemF0aW9uLzY1L2FydGlmYWN0/output.png

TF-A Codebase and Contributions



5 © 2023 Arm

Discussion Points (assuming language advantages are a given)
Training / Resourcing
• Increasingly popular, especially for younger engineers, so easy to attract engineers in short term
• May be more difficult to retain expertise for long-term maintenance
• Steep learning curve

In exchange, potentially spend less time on code reviews, debugging and maintenance. More robust product.
• Possibly more resources needed for projects with mixed language support or during migration phase

Cargo – de-facto build system and package manager; Crates.io – default package repo
• Pros: Enables standardized project layout and development tools, extensive library support
• Cons: Can result in many dependencies – higher risk of supply chain attacks, license compliance issues
• High update frequency also increases these risks (but has benefit of getting latest features, bug fixes)
• Could use managed package repo or (temporarily) lock dependencies or pass on risk to deployments

License – most of ecosystem uses "MIT OR Apache-2.0"
• Not standard for TF.org (would require board approval) but good for compatibility
• To aid compliance, Cargo.toml files have "package.license" fields (typically SPDX tags), which Cargo can 

parse for dependency checking – risk of not matching source!
• No equivalent copyright field, only (original) author



© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות


