
© 2022 Arm

PSA Crypto and the
headers dilemma

Antonio de Angelis, Open-Source Software group

20.04.23

2 © 2022 Arm

PSA Crypto and the headers dilemma

Problem scenario: an SDK can contain different implementations of the PSA Crypto APIs
• e.g. nRF Connect, but others for sure have similar requirements

mbed TLS include path: /root/mbedtls/include
▪ It has both include/mbedtls and include/psa

TF-M include path: /root/trusted-firmware-m/interface/include
▪ It has include/psa

PSA Crypto spec: an application just needs to perform #include “psa/crypto.h”
• All the other headers are private and implementation-specific
• Important for TF-M and mbed TLS because TF-M has caller isolation hence structs are different

How to survive this so far:
• Both include paths can be on $PATH, if the building environment can enforce the ordering consistently

(if an application wants to use TF-M’s PSA Crypto, it always needs to appear first)
• Example: an NS app in Zephyr that wants to use mbed TLS for the TLS stack, configures

MBEDTLS_USE_PSA_CRYPTO and at the same time wants to use PSA Crypto APIs from TF-M to provide
S/NS isolation etc

3 © 2022 Arm

PSA Crypto and the headers dilemma: real world feedback
Enforcing the ordering is not always reliable (build systems can get complex fast)
• It would be better if one of the two paths for PSA selectively added:

This is currently not possible because both psa and mbedtls include directories share the same root in
root/mbedtls/include.
Eventually might get there when the PSA Crypto repo is separated from mbed TLS and dependencies resolved

The interface psa/crypto.h defines an API that is standardized
• structs are IMPDEF, and they are in crypto_struct.h (private for the implementation)
• Types are standard, and they are in crypto_types.h, but…

typedef uint32_t psa_key_id_t;
#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
typedef psa_key_id_t mbedtls_svc_key_id_t;
#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
typedef struct {…} mbedtls_svc_key_id_t;
#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */

• mbedtls_svc_key_id_t is used in psa/crypto.h of mbed TLS, meaning that TF-M PSA Crypto headers
need to carry a private type of mbed TLS in order for TLS code that uses PSA Crypto to work with TF-M

Can be patched in existing deployments as long as mbedtls_svc_key_id_t is not
different from a uint32_t.

4 © 2022 Arm

PSA Crypto and the headers dilemma: actions so far

Concentrate implementation specific behaviour into crypto_struct and crypto_platform
• Try to align as much as possible from the other headers between Mbed TLS and TF-M
• At build time, crypto_struct and crypto_platform can be set through compiler defines instead of

relying on what is found on the INCLUDE_PATH

Consistent use of mbedtls_svc_key_id_t as the key ID type
• It’s an alias of psa_key_id_t as specified by the standard towards the clients of the API
• It remains a complex structure when PSA Crypto is used as the backend library of client-server

architecture (i.e. in the TF-M Crypto service), but that is hidden from applications
• This has been chosen to avoid disruption in the existing integrations of Mbed TLS

ABI compatibility remains out of the scope for now but will likely be investigated in the
future

	Slide 1: PSA Crypto and the headers dilemma
	Slide 2: PSA Crypto and the headers dilemma
	Slide 3: PSA Crypto and the headers dilemma: real world feedback
	Slide 4: PSA Crypto and the headers dilemma: actions so far

