Hi,
Can I suggest using bloblist for this instead? It is lightweight,
easier to parse, doesn't have GUIDs and is already used within U-Boot
for passing info between SPL/U-Boot, etc.
Docs here: https://github.com/u-boot/u-boot/blob/master/doc/README.bloblist
Header file describes the format:
https://github.com/u-boot/u-boot/blob/master/include/bloblist.h
Full set of unit tests:
https://github.com/u-boot/u-boot/blob/master/test/bloblist.c
Regards,
Simon
On Mon, 22 Mar 2021 at 23:58, François Ozog <francois.ozog@linaro.org> wrote:
>
> +Boot Architecture Mailman List <boot-architecture@lists.linaro.org>
>
> standardization is very much welcomed here and need to accommodate a very
> diverse set of situations.
> For example, TEE OS may need to pass memory reservations to BL33 or
> "capture" a device for the secure world.
>
> I have observed a number of architectures:
> 1) pass information from BLx to BLy in the form of a specific object
> 2) BLx called by BLy by a platform specific SMC to get information
> 3) BLx called by BLy by a platform specific SMC to perform Device Tree
> fixups
>
> I also imagined a standardized "broadcast" FF-A call so that any firmware
> element can either provide information or "do something".
>
> My understanding of your proposal is about standardizing on architecture 1)
> with the HOB format.
>
> The advantage of the HOB is simplicity but it may be difficult to implement
> schemes such as pruning a DT because device assignment in the secure world.
>
> In any case, it looks feasible to have TF-A and OP-TEE complement the list
> of HOBs to pass information downstream (the bootflow).
>
> It would be good to start with building the comprehensive list of
> information that need to be conveyed between firmware elements:
>
> information. | authoritative entity | reporting entity | information
> exchanged:
> dram | TFA | TFA |
> <format to be detailed, NUMA topology to build the SRAT table or DT
> equivalent?>
> PSCI | SCP | TFA? |
> SCMI | SCP or TEE-OS | TFA? TEE-OS?|
> secure SRAM | TFA. | TFA. |
> secure DRAM | TFA? TEE-OS? | TFA? TEE-OS? |
> other? | |
> |
>
> Cheers
>
> FF
>
>
> On Mon, 22 Mar 2021 at 09:34, Harb Abdulhamid OS via TF-A <
> tf-a@lists.trustedfirmware.org> wrote:
>
> > Hello Folks,
> >
> >
> >
> > I'm emailing to start an open discussion about the adoption of a concept
> > known as "hand-off blocks" or HOB to become a part of the TF-A Firmware
> > Framework Architecture (FFA). This is something that is a pretty major
> > pain point when it comes to the adoption of TF-A in ARM Server SoC’s
> > designed to enable a broad range of highly configurable datacenter
> > platforms.
> >
> >
> >
> >
> >
> > What is a HOB (Background)?
> >
> > ---------------------------
> >
> > UEFI PI spec describes a particular definition for how HOB may be used for
> > transitioning between the PEI and DXE boot phases, which is a good
> > reference point for this discussion, but not necessarily the exact solution
> > appropriate for TF-A.
> >
> >
> >
> > A HOB is simply a dynamically generated data structure passed in between
> > two boot phases. This is information that was obtained through discovery
> > and needs to be passed forward to the next boot phase *once*, with no API
> > needed to call back (e.g. no call back into previous firmware phase is
> > needed to fetch this information at run-time - it is simply passed one time
> > during boot).
> >
> >
> >
> > There may be one or more HOBs passed in between boot phases. If there are
> > more than one HOB that needs to be passed, this can be in a form of a "HOB
> > table", which (for example) could be a UUID indexed array of pointers to
> > HOB structures, used to locate a HOB of interest (based on UUID). In such
> > cases, instead of passing a single HOB, the boot phases may rely on passing
> > the pointer to the HOB table.
> >
> >
> >
> > This has been extremely useful concept to employ on highly configurable
> > systems that must rely on flexible discovery mechanisms to initialize and
> > boot the system. This is especially helpful when you have multiple
> >
> >
> >
> >
> >
> > Why do we need HOBs in TF-A?:
> >
> > -----------------------------
> >
> > It is desirable that EL3 firmware (e.g. TF-A) built for ARM Server SoC in
> > a way that is SoC specific *but* platform agnostic. This means that a
> > single ARM SoC that a SiP may deliver to customers may provide a single
> > TF-A binary (e.g. BL1, BL2, BL31) that could be used to support a broad
> > range of platform designs and configurations in order to boot a platform
> > specific firmware (e.g. BL33 and possibly even BL32 code). In order to
> > achieve this, the platform configuration must be *discovered* instead of
> > statically compiled as it is today in TF-A via device tree based
> > enumeration. The mechanisms of discovery may differ broadly depending on
> > the relevant industry standard, or in some cases may have rely on SiP
> > specific discovery flows.
> >
> >
> >
> > For example: On server systems that support a broad range DIMM memory
> > population/topologies, all the necessary information required to boot is
> > fully discovered via standard JEDEC Serial Presence Detect (SPD) over an
> > I2C bus. Leveraging the SPD bus, may platform variants could be supported
> > with a single TF-A binary. Not only is this information required to
> > initialize memory in early boot phases (e.g. BL2), the subsequent boot
> > phases will also need this SPD info to construct a system physical address
> > map and properly initialize the MMU based on the memory present, and where
> > the memory may be present. Subsequent boot phases (e.g. BL33 / UEFI) may
> > need to generate standard firmware tables to the operating systems, such as
> > SMBIOS tables describing DIMM topology and various ACPI tables (e.g. SLIT,
> > SRAT, even NFIT if NVDIMM's are present).
> >
> >
> >
> > In short, it all starts with a standardized or vendor specific discovery
> > flow in an early boot stage (e.g. BL1/BL2), followed by the passing of
> > information to the next boot stages (e.g. BL31/BL32/BL33).
> >
> >
> >
> > Today, every HOB may be a vendor specific structure, but in the future
> > there may be benefit of defining standard HOBs. This may be useful for
> > memory discovery, passing the system physical address map, enabling TPM
> > measured boot, and potentially many other common HOB use-cases.
> >
> >
> >
> > It would be extremely beneficial to the datacenter market segment if the
> > TF-A community would adopt this concept of information passing between all
> > boot phases as opposed to rely solely on device tree enumeration. This is
> > not intended to replace device tree, rather intended as an alternative way
> > to describe the info that must be discovered and dynamically generated.
> >
> >
> >
> >
> >
> > Conclusion:
> >
> > -----------
> >
> > We are proposing that the TF-A community begin pursuing the adoption of
> > HOBs as a mechanism used for information exchange between each boot stage
> > (e.g. BL1->BL2, BL2->BL31, BL31->BL32, and BL31->BL33)? Longer term we
> > want to explore standardizing some HOB structures for the BL33 phase (e.g.
> > UEFI HOB structures), but initially would like to agree on this being a
> > useful mechanism used to pass information between each boot stage.
> >
> >
> >
> > Thanks,
> >
> > --Harb
> >
> >
> >
> >
> >
> >
> > --
> > TF-A mailing list
> > TF-A@lists.trustedfirmware.org
> > https://lists.trustedfirmware.org/mailman/listinfo/tf-a
> >
>
>
> --
> François-Frédéric Ozog | *Director Linaro Edge & Fog Computing Group*
> T: +33.67221.6485
> francois.ozog@linaro.org | Skype: ffozog
> _______________________________________________
> boot-architecture mailing list
> boot-architecture@lists.linaro.org
> https://lists.linaro.org/mailman/listinfo/boot-architecture
|